Publications
Conference/Workshop Papers
- Xiaotang Wang, Yongchao Liu, Yun Zhu, Haizhou Shi, Chuntao Hong: Graph triple attention networks: a decoupled perspective. 2025 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2025), 2024, accepted.
- Ting Li, Chunqi Wu, Yang Liu, Zhao Li, Chuan Zhou, Chenhao Qiu, Hongyang Chen, Yongchao Liu, Peng Du and Chuntao Hong: Unsupervised pre-trained social networks for e-commerce community detection. 2024 IEEE International Conference on High Performance Computing and Communications (HPCC 2024), 2024.
-
Boci Peng, Yongchao Liu, Xiaohe Bo, Sheng Tian, Baokun Wang, Chuntao Hong, Yan Zhang: "Subgraph retrieval enhanced by graph-text alignment for commonsense question answering." European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2024 (ECML PKDD 2024), 2024.
-
Sheng Tian, Xintan Zeng, Yifei Hu, Baokun Wang, Yongchao Liu, Yue Jin, Changhua Meng, Chuntao Hong, Tianyi Zhang, Weiqiang Wang: "GraphRPM: risk pattern mining on industrial large attributed graphs." European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2024 (ECML PKDD 2024), 2024.
-
Pengyu Qiu, Yongchao Liu, Xintan Zeng: "DiVerFed: distribution-aware vertical federated learning for missing information". The 17th International Conference on Knowledge Science, Engineering and Management (KSEM 2024), 2024 (Best Student Paper Award).
-
Yue Jin, Sheng Tian, Yongchao Liu, Chuntao Hong:
"GraphGen: a distributed graph sample generation framework on industry-scale graphs".
The European Conference on Computer Systems (EuroSys 2024), 2024 (poster track).
-
Pengyu Qiu, Yuwen Pu, Yongchao Liu, Wenyan Liu, Yun Yue, Xiaowei Zhu, Lichun Li, Jinbao Li, Shouling Ji: "Integer is Enough: when vertical federated learning meets rounding". 38th AAAI Conference on Artificial Intelligence (AAAI 2024), 38(13), 14704-14712, 2024.
-
Yun Yue, Zhiling Ye, Jiadi Jiang, Yongchao Liu, Ke Zhang: "AGD: an auto-switchable optimizer using stepwise gradient difference for preconditioning matrix". 37th Conference on Neural Information Processing Systems (NeurIPS 2023), 2023
-
Yice Luo, Guannan Wang, Yongchao Liu, Jiaxin Yue, Weihong Cheng and Binjie Fei: "FAF: a risk detection framework on industry-scale graphs". 32nd ACM International Conference on Information and Knowledge Management (CIKM 2023), 2023, pp. 4717–4723.
- Yue Jin, Chengying Huan, Heng Zhang, Yongchao Liu, Shuaiwen Leon Song, Rui Zhao, Yao Zhang, Changhua He, Wenguang Chen: "G-Sparse: compiler-driven acceleration for generalized sparse computation for graph neural networks on modern GPUs". 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT 2023), 2023, pp. 137-149.
- Yun Yue, Jiadi Jiang, Zhiling Ye, Gao Ning, Yongchao Liu, Ke Zhang: "Sharpness-aware minimization revisited: weighted sharpness as a regularization term".
2023 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2023), 2023, pp. 3185–3194 (research track)
- Yue Jin, Yongchao Liu: "GPC: compiler-based optimization for sparse computations in graph neural networks". The European Conference on Computer Systems (EuroSys 2023), 2023 (poster track).
- Yuchen Zhou, Yanan Cao, Yongchao Liu, Yanmin Shang, Peng Zhang, Zheng Lin,
Yun Yue, Baokun Wang, Xing Fu and Weiqiang Wang: "Multi-aspect heterogeneous graph augmentation".
The 2023 ACM Web Conference (WWW 2023), 2023, pp. 39-48.
- Chengying Huan, Shuaiwen Leon Song, Santosh Pandey, Hang Liu, Yongchao Liu, Baptiste Lepers, Changhua He,
Kang Chen, Jinlei Jiang, Yongwei Wu: "TEA: a general-purpose temporal graph random walk engine".
The European Conference on Computer Systems (EuroSys 2023), 2023, pp. 182-198.
- Chengying Huan, Shuaiwen Leon Song, Yongchao Liu, Heng Zhang, Hang Liu, Charles He, Kang Chen, Jinlei Jiang, Yongwei Wu: "T-GCN: a sampling based streaming graph neural network system with hybrid architecture". 31st International Conference on Parallel Architectures and Compilation Techniques (PACT 2022), 2022, pp. 69–82.
- Heng Zhang, Lingda Li, Hang Liu, Donglin Zhuang, Rui Liu, Chengying Huan, Shuang Song, Dingwen Tao, Yongchao Liu, Charles He, Yanjun Wu, Shuaiwen Leon Song: "Bring orders into uncertainty: enabling efficient uncertain graph processing via novel path sampling on multi-accelerator system". International Conference on Supercomputing 2022 (ICS 2022), 2022, 11:14.
- Chengying Huan, Hang Liu, Mengxing Liu, Yongchao Liu, Changhua He, Kang Chen, Jinlei Jiang, Yongwei Wu, Shuaiwen Leon Song: "TeGraph: a novel general-purpose temporal graph computing engine". 38th International Conference on Data Engineering (ICDE 2022), 2022, pp. 578-592.
- Yang Gao, Peng Zhang, Zhao Li, Chuan Zhou, Hong Yang, Yongchao Liu, and Yue Hu: "Heterogeneous graph neural architecture search". IEEE International Conference on Data Mining (ICDM 2021), 2021, pp. 1066-1071
- Yun Yue, Yongchao Liu, Suo Tong, Minghao Li, Zhen Zhang, Chunyang Wen, Huanjun Bao, Lihong Gu, Jinjie Gu and Yixiang Mu: "Adaptive optimizers with sparse group lasso for neural networks in CTR prediction". The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2021), 2021, pp. 314–329 .
- Houyi Li, Zhihong Chen, Chenliang Li, Rong Xiao, Hongbo Deng, Peng Zhang, Yongchao Liu and Haihong Tang: "Path-based deep network for candidate item matching in recommenders". 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2021), 2021, pp. 1493–1502.
- Yue Jin, Yongchao Liu, Yong Chen, Rui Zhao, Yao Zhang: "Model-based cost estimation and its application in deep learning operation optimizations". GPU Technology Conference 2020 (GTC 2020), 2020, China (talk given by Yue Jin).
- Yongchao Liu, Yue Jin, Yong Chen, Teng Teng, Hang Ou, Rui Zhao, Yao Zhang: "Woodpecker-DL: an efficient compiler for accelerating deep learning on heterogeneous computing architectures". GPU Technology Conference 2019 (GTC 2019), 2019, China (talk given by Yong Chen).
- Shuozhi Xu, Thomas G. Payne, Hao Chen, Yongchao Liu, Liming Xiong, Youping Chen, David L. McDowell: "PyCAC: the concurrent atomistic-continuum simulation environment”. 2018 TMS Annual Meeting & Exhibition (TMS 2018)
- Yuandong Chan, Kai Xu, Haidong Lan, Weiguo Liu, Yongchao Liu and Bertil Schmidt: ”PUNAS: a parallel ungapped-alignment-featured seed verification for next-generation sequencing read alignment”. 31st IEEE International Parallel and Distributed Processing Symposium (IPDPS 2017), 2017, pp. 52-61.
- Haidong Lan, Weiguo Liu, Yongchao Liu and Bertil Schmidt: ”SWhybrid: a hybrid parallel framework for large-scale protein sequence database search”. 31st IEEE International Parallel and Distributed Processing Symposium (IPDPS 2017), 2017, pp. 42-51.
- Tony Pan, Patrick Flick, Chirag Jain, Yongchao Liu and Srinivas Aluru: "Kmerind: A flexible parallel library for k-mer indexing of biological sequences on distributed memory systems". 7th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB 2016), 2016, pp. 422-433
- Yongchao Liu, Tony Pan, and Srinivas Aluru: "Parallel pairwise correlation computation on Intel Xeon Phi clusters". 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2016), 2016, pp. 141-149
- Yongchao Liu, Martin Loewer, Srinivas Aluru, Bertil Schmidt: "SNVSniffer: an integrated caller for germline and somatic SNVs based on Bayesian models". 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2015), 2015, pp. 83-90.
- Sharma V. Thankachan, Sriram P. Chockalingam, Yongchao Liu, Ambujam Krishnan, Srinivas Aluru: "A greedy alignment-free distance estimator for phylogenetic inference (extended abstract)". 5th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS 2015), 2015, pp. 1-1.
- Yongchao Liu and Bertil Schmidt: "LightSpMV: faster CSR-based sparse matrix-vector multiplication on CUDA-enabled GPUs". 26th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2015), 2015, pp. 82-89 (Best Paper Award)
- Yongchao Liu, Jorge González-Domínguez, Bertil Schmidt: "Faster compressed sparse row (CSR)-based sparse matrix-vector multiplication using CUDA". GPU Technology Conference 2015 (GTC 2015), San Jose, USA, 2015
- Tuan Tu Tran, Simon Schindel, Yongchao Liu and Bertil Schmidt: "Bit-Parallel approximate pattern matching on the Xeon Phi coprocessor". 26th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2014), 2014, pp. 81-88
- Yongchao Liu, Tuan-Tu Tran, Felix Lauenroth and Bertil Schmidt: "SWAPHI-LS: Smith-Waterman algorithm on Xeon Phi coprocessors for long DNA sequences". 2014 IEEE International Conference on Cluster Computing (Cluster 2014), 2014, pp. 257-265 (Best Paper Award Recommendation)
- Yongchao Liu and Bertil Schmidt: "SWAPHI: Smith-Waterman protein database search on Xeon Phi coprocessors". 25th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2014), 2014, pp. 184-185 [full version at arXiv]
- Yongchao Liu and Bertil Schmidt: "CUSHAW Software Package: harnessing CUDA-enabled GPUs for next generation sequencing read alignment". GPU Technology Conference 2014 (GTC 2014), San Jose, USA, 2014
- Yongchao Liu and Bertil Schmidt: "Faster GPU-accelerated Smith-Waterman algorithm with alignment backtracking for short DNA sequences". 10th International Conference on Parallel Processing and Applied Mathematics (PPAM 2013), appear in Lecture Notes in Computer Science 8385, pp. 247-257
- Yongchao Liu and Bertil Schmidt: "Long read alignment based on maximal exact match seeds". 11th European Conference on Computational Biology (ECCB 2012), Basel, Switzerland (also published in the Bioinformatics journal)
- Yongchao Liu and Bertil Schmidt: Evaluation of GPU-based seed generation for computational genomics using Burrows-Wheeler transform". 26th IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW 2012), 684-690
- Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "A fast CUDA compatible short read aligner to large genomes". GPU Technology Conference 2012 (GTC 2012), San Jose, USA, 2012
- Weiguo Liu, Bertil Schmidt, Yongchao Liu, and Wolfgang Müller-Wittig: "Mapping of the BLASTP algorithm onto GPU clusters". 17th IEEE International Conference on Parallel and Distributed Systems (ICPADS 2011), 2011, 236-243
- Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "An ultrafast scalable many-core motif discovery algorithm for multiple GPUs". 25th IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW 2011), 428-434
- Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "MSA-CUDA: multiple sequence alignment on graphics processing units with CUDA". 20th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2009), 2009, 121-128 (Best Paper Award)
- Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "Parallel reconstruction of neighbor-Joining trees for large multiple sequence alignments using CUDA". 23th IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2009), 2009, 1-8.
Journal Articles
- Li Ma, Yongchao Liu, Xiaofeng Gao, Peng Zhang, Chuntao Hong: "Building robust and trustworthy HGNN models: a learnable threshold approach for node classification". ACM Transactions on Knowledge Discovery from Data (impact factor 4.0), 2024.
- Chengying Huan, Yongchao Liu, Heng Zhang, Shiyang Chen, Shuaiwen Leon Song, Yanjun Wu, Hang Liu:"TeGraph+: scalable temporal graph processing enabling flexible edge modifications". IEEE Transactions on Parallel and Distributed Systems (impact factor 5.3), 2024.
- Chengying Huan, Yongchao Liu, Heng Zhang, Shuaiwen Song, Santosh Pandey, Shiyang Chen, Xiangfei Fang, Yue Jin, Baptiste Lepers, Hang Liu, Yanjun Wu:
"TEA+: a novel temporal graph random walk engine with hybrid storage architecture."
ACM Transactions on Architecture and Code Optimization (impact factor 1.6), 2024.
- Xiaowei Zhu, Zhisong Fu, Zhenxuan Pan, Jin Jiang, Chuntao Hong, Yongchao Liu, Yang Fang, Wenguang Chen, Changhua He:
"Taking the Pulse of Financial Activities with Online Graph Processing".
ACM SIGOPS Operating Systems Review, vol 55, no.1, 2021
- Tony C Pan, Patrick Flick, Chirag Jain, Yongchao Liu and Srinivas Aluru: "Kmerind: a exible parallel library for k-mer indexing of biological sequences on distributed memory systems". IEEE/ACM Transactions on Computational Biology and Bioinformatics (impact factor 1.955), 2019, 16(4):1117-1131.
- Shuozhi Xu, Thomas Payne, Hao Chen, Yongchao Liu, Liming Xiong, Youping Chen and David McDowell: "PyCAC: The concurrent atomistic-continuum simulator with a Python scripting interface". Journal of Materials Research (impact factor 1.673), 2018, 33(7):857-871.
- Yongchao Liu and Bertil Schmidt: "LightSpMV: faster CUDA-compatible sparse matrix-vector multiplication using compressed sparse rows". Journal of Signal Processing Systems (impact factor 0.508), 2018, 90(1):69-86.
- Yongchao Liu, Fabian Ripp, Rene Koeppe, Hanno Schmidt, Lukas Hellmann, Mathias Weber, Christopher Felix Krombholz, Bertil Schmidt and Thomas Hankeln: "AFS: identification and quantification of species composition by metagenomic sequencing". Bioinformatics (impact factor 7.307), 2017, 33 (9): 1396-1398.
- Sharma V. Thankachan, Sriram P. Chockalingam, Yongchao Liu, Ambujam Krishnan, Srinivas Aluru: "A greedy alignment-free distance estimator for phylogenetic inference". BMC Bioinformatics (impact factor 2.58), 2017, 18(Suppl 8):238.
- Jorge Gonzalez-Dominguez, Yongchao Liu, Juan Tourino and Bertil Schmidt: "MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems". Bioinformatics (impact factor 5.766), 2016, 32(24): 3826-3828
- Yongchao Liu, Martin Loewer, Srinivas Aluru and Bertil Schmidt: "SNVSniffer: an integrated caller for germline and somatic single-nucleotide and indel mutations". BMC Systems Biology (impact factor 2.435), 2016, 10(suppl 2): 47
- Jorge González-Domínguez, Yongchao Liu, Bertil Schmidt: "Parallel and scalable short-read alignment on multi-core clusters using UPC++". PLoS One (impact factor 3.234), 2016, 11(1): e0145490.
- Tuan Tu Tran, Yongchao Liu, Bertil Schmidt: "Bit-parallel approximate pattern matching: Kepler GPU versus Xeon Phi". Parallel Computing (impact factor 1.511), 2016, 54: 128-138.
- Sharma V. Thankachan, Sriram P. Chockalingam, Yongchao Liu, Alberto Apostolico and Srinivas Aluru: "ALFRED: a practical method for alignment-free distance computation". Journal of Computational Biology (impact factor 1.737), 2016, 23(6): 452-460
- Yongchao Liu, Thomas Hankeln, and Bertil Schmidt: "Parallel and space-efficient construction of Burrows-Wheeler transform and suffix array for big genome data". IEEE Transactions on Computational Biology and Bioinformatics (impact factor 1.536), 2016, 13(3): 592-598.
- Yongchao Liu, Bertil Schmidt: "GSWABE: faster GPU-accelerated sequence alignment with optimal alignment retrieval for short DNA sequences". Concurrency and Computation: Practice and Experience (impact factor 0.784), 2015, 27: 958-972
- Fabian Ripp, Christopher F Krombholz, Yongchao Liu, Mathias Weber, Anne Sch?fer, Bertil Schmidt, Rene K?ppel and Thomas Hankeln: "All-Food-Seq (AFS): a quantifiable screen for species in biological samples by deep DNA sequencing". BMC Genomics (impact factor 4.40), 2014, 15:639 [Reported by Austrilian Food News]
- Adrianto Wirawan, Robert S Harris, Yongchao Liu, Bertil Schmidt and Jan Schr?der: "HECTOR: A parallel multistage homopolymer spectrum based error corrector for 454 sequencing data." BMC Bioinformatics (impact factor 3.02), 2014, 15:131
- Yongchao Liu, Bernt Popp, and Bertil Schmidt: "CUSHAW3: sensitive and accurate base-space and color-space short-read alignment with hybrid seeding." PLOS ONE (impact factor 3.730), 2014, 9(1): e86869
- Yongchao Liu and Bertil Schmidt: "CUSHAW2-GPU: empowering faster gapped short-read alignment using GPU computing". IEEE Design & Test (impact factor 1.623), 2014, 31(1): 31-39
- Yongchao Liu, Adrianto Wirawan and Bertil Schmidt: "CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions". BMC Bioinformatics (impact factor 3.02), 2013, 14:117.
- Yongchao Liu, Jan Schr?der, and Bertil Schmidt: "Musket: a multistage k-mer spectrum based error corrector for Illumina sequence data". Bioinformatics (impact factor 5.323), 2013, 29(3): 308-315
- Yongchao Liu and Bertil Schmidt: "Long read alignment based on maximal exact match seeds". Bioinformatics(impact factor 5.468), 2012, 28(18): i318-i324 (also from ECCB 2012)
- Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform". Bioinformatics (impact factor 5.468), 2012, 28(14): 1830-1837
- Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "Parallelized short read assembly of large genomes using de Bruijn graphs". BMC Bioinformatics (impact factor 3.43), 2011, 12:354
- Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI". BMC Bioinformatics (impact factor 3.43), 2011, 12:85 [Reported by GenomeWeb]
- Lakshmi Kuttippurathu, Michael Hsing, Yongchao Liu, Bertil Schmidt, Douglas L.Maskell, Kyungjoon Lee, Aibin He, William T. Pu, and Sek Won Kong: "CompleteMOTIFs: DNA motif discovery platform for transcription factor binding experiments". Bioinformatics (impact factor 4.926), 2011, 27(5): 715-717
- Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities". Bioinformatics (impact factor 4.926), 2010, 26(16): 1958 -1964
- Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions". BMC Research Notes, 2010, 3:93
- Yongchao Liu, Bertil Schmidt, Weiguo Liu, and Douglas L. Maskell: "CUDA-MEME: accelerating motif discovery in biological sequences using CUDA-enabled graphics processing units". Pattern Recognition Letters (impact factor 1.559), 2010, 31(14): 2170 - 2177
- Yongchao Liu, Douglas L. Maskell, and Bertil Schmidt: "CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units". BMC Research Notes, 2009, 2:73
- 李庆诚, 刘永超(Yongchao Liu), 刘嘉鑫: "平台无关的PDF嵌入式高性价比解析器设计与实现(Design and implementation of a platform-independent, high-performance-cost-ratio, embedded PDF format parser*)". 计算机应用(Computer Applications), 2007, 27(z1). [*translated by myself]
Book Chapters
- Yongchao Liu and Bertil Schmidt: "CUSHAW Suite: parallel and efficient algorithms for NGS read alignment". Algorithms for Next-Generations Sequencing Data: Techniques, Approaches and Applications, edited by Mourad Elloumi, Springer, 2017.
- Yongchao Liu and Bertil Schmidt: "Pairwise DNA sequence alignment optimization". High Performance Parallelism Pearls Volume Two - Multicore and Many-core Programming Approaches, edited by James Reinders and Jim Jeffers, 2015, pp. 43-54
- Yongchao Liu and Bertil Schmidt: "Multiple protein sequence alignment with MSAProbs". Methods in Molecular Biology, Edited by David Russell, Springer, 2014, 1079: 211-218
- Lukasz Ligowski, Witold Rudnicki, Yongchao Liu, and Bertil Schmidt: "Accurate scanning of sequence databases with the Smith-Waterman algorithm". GPU Computing Gems, Edited by Wen-mei W. Hwu, Elsevier 2011, Pages 155-172
- Yongchao Liu, Bertil Schmidt , and Douglas L. Maskell: "Parallel bioinformatics algorithms for CUDA-enabled GPUs". Bioinformatics: High Performance Parallel Computer Architectures, Edited by Bertil Schmidt, CRC Press 2010, Pages 117-137
Technical Reports
-
Yuwei Hu, Runlin Lei, Xinyi Huang, Zhewei Wei, Yongchao Liu: "Scalable and accurate graph reasoning with LLM-based multi-agents". arXiv:2410.05130, 2024.
- Ant Group, and other institutions: "Graph+AI: 大模型浪潮下的图计算", White Paper. 2024.
- Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, Siliang Tang: "Graph Retrieval-Augmented Generation: A Survey". https://arxiv.org/abs/2408.08921, 2024.
- Ant Group, Tsinghua University, Beijing University of Posts and Telecommunications, Sun Yat-sen University, Shanghai Jiao Tong University, Fudan University, Zhijiang Laboratory, Alibaba Group:"
图风控行业技术报告". 2023
- Qinkai Zheng, Houyi Li, Peng Zhang, Zhixiong Yang, Guowei Zhang, Xintan Zeng, Yongchao Liu:
"GIPA: general information propagation algorithm for graph learning.
https://arxiv.org/abs/2105.06035, 2021
- Yongchao Liu, Houyi Li, Guowei Zhang, Xintan Zeng, Yongyong Li, Bin Huang, Peng Zhang, Zhao Li, Xiaowei Zhu, Changhua He, Wenguang Chen:
"GraphTheta: A distributed graph neural network learning system with flexible training strategy".
arXiv:2104.10569, 2021
- Yongchao Liu, Yue Jin, Yong Chen, Teng Teng, Hang Ou, Rui Zhao, Yao Zhang:
"Woodpecker-DL: Accelerating Deep Neural Networks via Hardware-Aware Multifaceted Optimizations".
arXiv:2008.04567, 2020.
- Yongchao Liu, Tony Pan, Oded Green and Srinivas Aluru:
"Parallelized Kendall's tau coefficient computation via SIMD vectorized sorting on many-integrated-core processors". arXiv:1704.03767, 2017.
- Yongchao Liu and Srinivas Aluru: "LightScan: faster scan primitive on CUDA compatible manycore processors". arXiv:1604.04815 [Cs.DC], 2016.
- Yongchao Liu: "Research statement for assistant professorship application". ResearchGate, 2016, doi: 10.13140/RG.2.2.28828.90243/1
- Yongchao Liu: "OpenGraphAssembly: abstract, modularize and parallelize fundamental building blocks for graph-based genome assembly". ResearchGate, 2015, doi: 10.13140/RG.2.2.11212.825
- Yongchao Liu, Bernt Popp, and Bertil Schmidt: "High-speed and accurate color-space short-read alignment with CUSHAW2". arXiv:1304.4766 [q-bio.GN], 2013